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In this paper, we prove the existence of global weak solutions to the compressible 
two-fluid Navier–Stokes equations in three dimensional space. The pressure depends 
on two different variables from the continuity equations. We develop an argument of 
variable reduction for the pressure law. This yields to the strong convergence of the 
densities, and provides the existence of global solutions in time, for the compressible 
two-fluid Navier–Stokes equations, with large data in three dimensional space.
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r é s u m é

Dans cet article, nous prouvons l’existence de solutions globales pour l’équation 
de Navier–Stokes compressible bifluide en trois dimensions d’espace. La pression 
dépend de deux quantités transportées par le flot. Nous développons une méthode 
de réduction de variables pour l’étude de la pression. Nous obtenons ainsi la 
convergence forte des densités, et l’existence de solutions globales en temps pour le 
système étudié.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we are considering a viscous compressible two-fluid model with a pressure law in two vari-
ables. We show the existence of global weak solutions to the following two-fluid compressible Navier–Stokes 
system in three dimensional space:
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⎧⎪⎨⎪⎩
nt + div(nu) = 0,
ρt + div(ρu) = 0,[
(ρ + n)u

]
t
+ div

[
(ρ + n)u⊗ u

]
+ ∇P (n, ρ) = μΔu + (μ + λ)∇divu on Ω × (0,∞),

(1.1)

with the initial and boundary conditions

n(x, 0) = n0(x), ρ(x, 0) = ρ0(x), (ρ + n)u(x, 0) = M0(x) for x ∈ Ω, (1.2)
u|∂Ω = 0 for t ≥ 0, (1.3)

where Ω ⊂ R
3 is a bounded domain, P (n, ρ) = ργ + nα denotes the pressure for γ ≥ 1 and α ≥ 1, u stands 

for the velocity of fluid, ρ and n are the densities of two fluids, μ and λ are the viscosity coefficients. Here 
we assume that μ and λ are fixed constants, and

μ > 0, 2μ + λ ≥ 0.

The two-fluid model was originally developed by Zuber and Findlay [34], Wallis [32], and Ishii [19,20]. The 
case α = 1 corresponds to the hydrodynamic equations of [6,30]. It was derived in [6,30] as an asymptotic 
limit of a coupled system of the compressible Navier–Stokes equation with a Vlasov–Fokker–Planck equation. 
The case α = 2 is associated to the compressible Oldroyd-B type model with stress diffusion, see Barrett, 
Lu, and Suli [1]. The main difference with the classical compressible Navier–Stokes equations is that the 
pressure law P (ρ, n) = ργ + nα depends on two variables. In this context, the existence of weak solutions 
to equations (1.1) remained open until now. We refer the reader to [2–4,19,20,32,34] for more physical 
background and discussion of numerical studies for such mathematical models.

One difficulty dealing with the compressible Navier–Stokes equation is the degeneracy of the system close 
to the vacuum (when the density is vanishing). The first existence result for the compressible Navier–Stokes 
equations in one dimensional space was established by Kazhikhov and Shelukhin [22]. This result was 
restricted to initial densities bounded away from zero. It has been extended by Hoff [14] and Serre [31] to 
the case of discontinuous initial data, and by Mellet–Vasseur [29] in the case of density dependent viscosity 
coefficients. For the multidimensional case, the first global existence with small initial data was proved by 
Matsumura and Nishida [25–27], and later by Hoff [15–17] for discontinuous initial data. Lions, in [23], 
introduced the concept of renormalized solutions for the compressible Navier–Stokes equations which allows 
to control the possible oscillations of density. He proved the global existence of 3D solutions for γ ≥ 9

5 , and 
large initial values. It was later improved by Jiang and Zhang [21] for spherically symmetric initial data for 
γ > 1, and by Feireisl–Novotný–Petzeltová [12] and Feireisl [13] for γ > 3

2 , and to Navier–Stokes-Fourier 
systems. One key ingredient of the theory [23,21,12] is to obtain higher integrability on the density. This is 
obtained thanks to the elliptic structure on the viscous effective flux, and the specific form of the pressure 
P = ργ . Relying on this structure, Lions deduced that the density ρ is uniformly bounded in Lγ+ 2γ

3 −1. Note 
that for 1 ≤ γ ≤ 3

2 , the construction of weak solutions for large data remains largely open, see [24]. The 
primary difficulty is the possible concentration of the convective term in this case. Very recently, Hu [18]
studied the concentration phenomenon of the kinetic energy, ρ|u|2, associated to the isentropic compressible 
Navier–Stokes equations for 1 ≤ γ ≤ 3

2 . Finally, let us mention a very promising work of Bresch–Jabin [5]. 
They developed a new method to obtain compactness on the density. This method is very different from 
the theory initiated by Lions. It allows already the treatment of non-monotone pressure laws.

The problem becomes even more challenging when the pressure law depends on two variables as follows

P (ρ, n) = ργ + nα. (1.4)

To the best of our knowledge, the only results on global existence of weak solutions to System (1.1) with 
large initial data are restricted to the one dimension case, see [9,11] (see also [8,10,33] for smallness assump-
tions). In [1], Barrett–Lu–Suli established the existence of weak solutions to a compressible Oldroyd-B type 
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model with pressure law P = ργ + n + n2, in the two dimensional space, but with an extra diffusion term 
on the n equation. This provides higher regularity on n due to the parabolic structure. David–Michalek–
Mucha–Novotny–Pokorny–Zatorska in [28] constructed a weak solution of the compressible Navier–Stokes 
system with the nonlinear pressure law

P (ρ, s) = ργT (s), γ ≥ 9
5 ,

where s satisfies the entropy equation. Note that the quantity θ = (T (s))
1
γ can be interpreted as a potential 

temperature, thus the pressure could take the form P = (ρθ)γ = Zγ . The quantity Z also satisfies the 
continuity equation. This allowed them to apply the standard technique for the compressible Navier–Stokes 
equations to this system.

Because the pressure law depends genuinely on two variables, the treatment of the system (1.1) is more 
involved. At first sight, it seems that more regularity on the densities is required to control the cross products, 
like ργn and nαρ. These extra regularity properties are, so far, out of reach, and the classical techniques 
cannot be applied directly on (1.1).

For any smooth solution of system (1.1), the following energy inequality holds for any time 0 ≤ t ≤ T :

d

dt

∫
Ω

[ (ρ + n)|u|2
2 + Gα(n) + 1

γ − 1ρ
γ
]
dx +

∫
Ω

[
μ|∇u|2 + (μ + λ)|divu|2

]
dx ≤ 0, (1.5)

where

Gα(n) =

⎧⎨⎩ n lnn− n + 1, for α = 1,

nα

α−1 , for α > 1.

As usual, we assume that ∫
Ω

[ (ρ0 + n0)|u0|2
2 + Gα(n0) + 1

γ − 1ρ
γ
0

]
dx < ∞

in the whole paper. Thus, we set the following restriction on the initial data

inf
x∈Ω

ρ0 ≥ 0, inf
x∈Ω

n0 ≥ 0, ρ0 ∈ Lγ(Ω), Gα(n0) ∈ L1(Ω), (1.6)

and

M0√
ρ0 + n0

∈ L2(Ω) where M0√
ρ0 + n0

= 0 on {x ∈ Ω|ρ0(x) + n0(x) = 0}. (1.7)

The definition of weak solution in the energy space is given in the following sense.

Definition 1.1. We call (ρ, n, u) : Ω × (0, ∞) → R+ ×R+ ×R
3 a global weak solution of (1.1)–(1.3) if for any 

0 < T < +∞,

• ρ ∈ L∞(
0, T ; Lγ(Ω)

)
, Gα(n) ∈ L∞(

0, T ; L1(Ω)
)
, 
√
ρ + nu ∈ L∞(

0, T ; L2(Ω)
)
, u ∈ L2(0, T ; H1

0 (Ω)
)
,

• (ρ, n, u) solves the system (1.1) in D′(QT ), where QT = Ω × (0, T ),
•

(
ρ, n, (ρ + n)u

)
(x, 0) =

(
ρ0(x), n0(x), M0(x)

)
, for a.e. x ∈ Ω,

• the energy inequality (1.5) holds in D′(
R

3 × (0, T )
)
,
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• (1.1)1 and (1.1)2 hold in D′(
R

3 × (0, T )
)

provided ρ, n, u are prolonged to be zero on R
3/Ω,

• the equation (1.1)1 and (1.1)2 are satisfied in the sense of renormalized solutions, i.e.,

∂tb(f) + div
(
b(f)u

)
+ [b′(f)f − b(f)]divu = 0

holds in D′(QT ), for any b ∈ C1(R) such that b′(z) ≡ 0 for all z ∈ R large enough, where f = ρ, n.

The main result of this paper is as follows.

Theorem 1.2. Assume that Ω ⊂ R
3 is a bounded domain in R3 of class C2+ν , ν > 0. Let the initial data be 

under the conditions (1.6)–(1.7).

• If

α ≥ 1, γ >
9
5 ,

and the initial data additionally satisfies

1
c0

ρ0 ≤ n0 ≤ c0ρ0 on Ω, (1.8)

where c0 ≥ 1 is a constant, then there exists a global weak solution (ρ, n, u) to (1.1)–(1.3).
• Without restriction (1.8), if

α, γ >
9
5 and max{3γ

4 , γ − 1, 3(γ + 1)
5 } < α < min{4γ

3 , γ + 1, 5γ
3 − 1}, (1.9)

then there exists a global weak solution (ρ, n, u) to (1.1)–(1.3).

Remark 1.3. The restriction γ > 9
5 provides the L2−estimate on the density. This is needed to apply the 

renormalized argument of DiPerna–Lions to the system. The condition (1.8) is propagated in time, and 
gives that

n ≤ Cρ

for almost every time t > 0. This provides extra integrability on n without more assumption on the system 
than α ≥ 1. However, without the condition (1.8), the value of α needs to be close enough to the value of γ. 
This is required to insure the L2−estimate on n.

The key idea of our proof is to perform a variable reduction in the pressure law. When considering a 
family of solutions, we decompose the pressure as

Pε = ργε + nα
ε = Aαdγε + Bγdαε + remainder,

where dε = ρε + nε. The idea is that we can control the oscillations of Aε = nε/dε and Bε = ρε/dε.
The structure of this paper is as follows. In Section 2, we develop a new tool to handle the compactness 

on the terms Aε and Bε. In section 3, we solve the approximation system using the Galerkin method. In 
section 4, we study the limits as ε goes to zero. The focus of this section is to prove that

nα + ργ + δ(ρ + n)β = nα + ργ + δ(ρ + n)β .
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Here and always, f is the weak limit of fε. One of the key step is to control the product of nα
ε + ργε and 

nε + ρε, we rewrite them as follows

nα
ε + ργε =Aα

ε d
α
ε + Bγ

ε d
γ
ε = Aαdαε + Bγdγε + (Aα

ε −Aα)dαε + (Bγ
ε −Bγ)dγε ,

nε + ρε =(Aε + Bε)dε = (A + B)dε + (Aε −A + Bε −B)dε,

where dε = ρε+nε, d = ρ +n, (Aε, Bε) = (nε

dε
, ρε

dε
) if dε �= 0, (A, B) = (nd , 

ρ
d ) if d �= 0, and 0 ≤ Aε, Bε, A, B ≤ 1, 

and (Aεdε, Bεdε) = (nε, ρε), (Ad, Bd) = (n, ρ), (ρ, n) is the limit of (ρε, nε) in a suitable weak topology. Here 
we want to show[

(Aα
ε −Aα)dαε + (Bγ

ε −Bγ)dγε
]
(nε + ρε) → 0, and

(
Aαdαε + Bγdγε

)
(Aε −A + Bε −B)dε → 0

in some sense as ε → 0. This can be done because ρε and nε are bounded uniformly for ε in Lβ+1(QT ) where 
β > max{α, γ, 4}, and, thanks to the result of Section 2

lim
ε→0+

T∫
0

∫
Ω

dε|Aε −A|s dx dt = 0, and lim
ε→0+

T∫
0

∫
Ω

dε|Bε −B|s dx dt = 0.

In Section 5, we recover the weak solution by letting δ goes to zero. The highlight of this section is to show 
that

nα + ργ = nα + ργ ,

which is similar to the limits in term of ε. However, a new difficulty occurs because of δ = 0. We follow [12] and 
use a cut-off function in the renormalization to show the strong convergence of ρδ and nδ. This can be done 
using again the variable reduction of Section 2. At this level of approximation, we require γ > 9

5 such that 
ρδ is bounded in Lγ+θ2(QT ) with γ+θ2 > 2 for some θ2 satisfying θ2 < γ

3 and θ2 ≤ min
{
1, 2γ3 −1

}
. In order 

to guarantee that nδ is bounded in Lq1(QT ) for some q1 > 2, we require either α ∈ (9
5 , ∞) ∩ (γ − θ1, γ + θ2)

or α ∈ [1, ∞) and 1
c0
ρ0 ≤ n0 ≤ c0ρ0.

2. An error estimate

Our main goal of this section is to prove the following Theorem 2.2. The proof relies on the DiPerna–Lions 
theory of the renormalized solutions to the transport equation. This theorem allows us to obtain the weak 
stability of solutions to (1.1).

Note that if ρ and n are solutions to the two first transport equations of (1.1), then (formally) the ratio 
ρ/n verifies

∂

∂t

( ρ

n

)
+ u · ∇

( ρ

n

)
= 0. (2.1)

The idea is to get some sort of compactness on this quantity. This is reminiscent to the compactness obtained 
by DiPerna and Lions for transport equation in [7]. They showed that if the quantities (div u) are uniformly 
bounded in L1(L∞), and initial values of ρ/n are compact in Lp

loc, then solutions to (2.1) are compact in 
C0(Lp

loc). Theorem 2.2 can be seen as an extension of this theorem to possible diffusive versions of (2.1), 
where the condition on div u is relaxed (but some control on the whole gradient of u is available in L2(L2)).

We start from the following lemma in this section.



252 A. Vasseur et al. / J. Math. Pures Appl. 125 (2019) 247–282
Lemma 2.1. Let {(gK , hK)}∞K=1 be a sequence with the following properties

(gK , hK) → (g, h) weakly in Lp(QT ) as K → ∞, (2.2)

for any given p > 1, gK , hK ≥ 0, and

lim
K→+∞

T∫
0

∫
Ω

aKhK dx dt ≤
T∫

0

∫
Ω

hah dx dt, (2.3)

where aK = hK

gK
if gK �= 0, ah = h

g if g �= 0, 0 ≤ aK , ah ≤ C for some positive constant C independent of K, 
and aKgK = hK , ahg = h, then

lim
K→+∞

T∫
0

∫
Ω

gK |aK − ah|2 dx dt = 0. (2.4)

In particular,

lim
K→+∞

T∫
0

∫
Ω

gK |aK − ah|s dx dt = 0, (2.5)

for any s > 1.

Proof. Note that

T∫
0

∫
Ω

gK |aK − ah|2 dx dt =
T∫

0

∫
Ω

aKhK dx dt− 2
T∫

0

∫
Ω

hKah dx dt +
T∫

0

∫
Ω

gKa2
h dx dt,

one obtains

lim
K→+∞

T∫
0

∫
Ω

gK |aK − ah|2 dx dt ≤
T∫

0

∫
Ω

hah dx dt− 2
T∫

0

∫
Ω

hah dx dt +
T∫

0

∫
Ω

hah dx dt

=0,

where we have used aKgK = hK , ahg = h, (2.3) and the weak compactness of gK and hK in (2.2). This 
deduces (2.4).

By the Hölder inequality and (2.4), (2.5) follows for s ∈ (1, 2). If s ∈ [2, ∞), note that (aK − ah) is 
bounded in L∞(

Ω × (0, T )
)
. This allows us to have (2.5). �

The following theorem is our main result of this section.

Theorem 2.2. Let νK → 0 as K → +∞, and νK ≥ 0. If ρK ≥ 0 and nK ≥ 0 are the solutions to

(ρK)t + div(ρKuK) = νKΔρK , ρK |t=0 = ρ0, νK
∂ρK
∂ν

|∂Ω = 0, (2.6)

and
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(nK)t + div(nKuK) = νKΔnK , nK |t=0 = n0, νK
∂nK

∂ν
|∂Ω = 0, (2.7)

respectively, with C0 ≥ 1 independent of K such that

• ‖(ρK , nK)‖L∞(0,T ;L2(Ω)) ≤ C0, 
√
νK‖∇ρK‖L2(0,T ;L2(Ω)) ≤ C0, 

√
νK‖∇nK‖L2(0,T ;L2(Ω)) ≤ C0.

• ‖uK‖L2(0,T ;H1
0 (Ω)) ≤ C0.

• For any K > 0 and any t > 0: ∫
Ω

b2K
dK

dx ≤
∫
Ω

b20
d0

dx, (2.8)

where bK = ρK or nK , and dK = ρK + nK .
Then, up to a subsequence, we have

nK → n, ρK → ρ weakly in L∞(0, T ;L2(Ω)),

uK → u weakly in L2(0, T ;H1
0 (Ω)),

and for any s > 1,

lim
K→+∞

T∫
0

∫
Ω

dK |aK − a|s dx dt = 0, (2.9)

where aK = bK
dK

if dK �= 0, a = b
d if d �= 0, and aKdK = bK , ad = b. Here (b, d) is the weak limit of (bK , dK).

Remark 2.3. The proof relies on the DiPerna–Lions renormalized argument for transport equation. The L2

bounds of the densities ρK and nK make it possible to use this theory for equations (2.6).

Remark 2.4. If νK > 0, uK is smooth enough and ρK is bounded by below, then (2.8) is verified. In fact, 
choosing ϕ(bK , dK) = b2K

dK
, one obtains

∂ϕ(bK , dK)
∂t

+ div(ϕuK) + [ ∂ϕ
∂bK

bK + ∂ϕ

∂dK
dK − ϕ]divuK

+ νK( ∂
2ϕ

∂b2K
|∇bK |2 + ∂2ϕ

∂d2
K

|∇dK |2 + 2 ∂2ϕ

∂bK∂dK
∇bK · ∇dK) − νKΔϕ = 0.

Note that

∂ϕ

∂bK
bK + ∂ϕ

∂dK
dK − ϕ = 0

and ϕ is convex, thus we have

d

dt

∫
Ω

ϕ(bK , dK) dx ≤ 0.

We will rely on the following lemma to show Theorem 2.2.

Lemma 2.5. Let β : R
N → R be a C1 function with |∇β(X)| ∈ L∞(RN ), and R ∈

(
L2(0, T ;L2(Ω))

)N , 
u ∈ L2(0, T ; H1

0 (Ω)) satisfy
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∂

∂t
R + div(u⊗R) = 0, R|t=0 = R0(x) (2.10)

in the distribution sense. Then we have

(β(R))t + div(β(R)u) + [∇β(R) ·R− β(R)]divu = 0 (2.11)

in the distribution sense. Moreover, if R ∈ L∞(0, T ; Lγ(Ω)) for γ > 1, then

R ∈ C([0, T ];L1(Ω)),

and so

∫
Ω

β(R) dx(t) =
∫
Ω

β(R0) dx−
t∫

0

∫
Ω

[∇β(R) ·R− β(R)]divu dx dt.

Remark 2.6. If N = 1, it is the result of Feireisl [13].

To prove Lemma 2.5, we shall rely on the following lemma which was called the commutator lemma.

Lemma 2.7. [23]. There exists C > 0 such that for any ρ ∈ L2(Rd) and u ∈ H1(Rd),

‖ησ ∗ div(ρu) − div(u(ρ ∗ ησ))‖L1(Rd) ≤ C‖u‖H1(Rd)‖ρ‖L2(Rd).

In addition,

ησ ∗ div(ρu) − div(u(ρ ∗ ησ)) → 0 in L1(Rd), as σ → 0,

where ησ = 1
σd η( x

σ ), and η(x) ≥ 0 is a smooth even function compactly supported in the space ball of radius 
1, and with integral equal to 1.

Proof of Lemma 2.5. Here, we devote the proof of Lemma 2.5. The first two steps are similar to the work 
of [12].

Step 1: Proof of (2.11).

Applying the regularizing operator f �−→ f ∗ ησ to both sides of (2.10), we obtain

(Rσ)t + div(u⊗Rσ) = Sσ, (2.12)

almost everywhere on O ⊂ Ō ⊂ (0, T ) × Ω provided σ > 0 small enough, where

Sσ = div(u⊗Rσ) − (div(u⊗R))σ,

and fσ(x) = f ∗ ησ. Thanks to Lemma 2.7, we conclude that

Sσ → 0 in L1(O) as σ → 0.

Equation (2.12) multiplied by ∇β(R), where β is a C1 function, gives us

[β(Rσ)]t + div[β(Rσ)u] + [∇β(Rσ) ·Rσ − β(Rσ)]divu = ∇β(Rσ) · Sσ.

This yields (2.11) by letting σ → 0.
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Step 2: Continuity of R in the strong topology.

By (2.11), we have

∂

∂t
TK(R) + div(TK(R)u) + (∇TK(R) ·R− TK(R))divu = 0 in D′((0, T ) × Ω), (2.13)

where Tk(R) is a cutoff function verifying

TK(R) = T̃K(|R|), and T̃K(z) = KT ( z

K
),

and T (z) = z for any z ∈ [0, 1], and it is concave on [0, ∞), T (z) = 2 for any z ≥ 3, and T is a C∞ function. 
We conclude that TK(R) is bounded in C([0, T ]; L2

weak(Ω)) due to R ∈ L∞(0, T ; L2(Ω)). Thanks to (2.13), 
we have

TK(R) belong to C([0, T ];Lγ
weak(Ω)) (2.14)

for any K ≥ 1.
Applying the same argument as in step 1 for (2.13), we have

∂

∂t
[TK(R)]σ + div([TK(R)]σu) = Aσ

K a.e. on (0, T ) × U, (2.15)

where U is a compact subset of Ω. Thanks to Lemma 2.7, Aσ
K is bounded in L2(0, T ; L1(Ω)). Meanwhile, 

using 2[TK(R)]σ to multiply (2.15), we have

∂

∂t
([TK(R)]σ)2 + div(([TK(R)]σ)2u) + ([TK(R)]σ)2divu = 2[TK(R)]σAσ

K .

Thus, for any test function η ∈ D(Ω), the family of functions with respect to σ for fixed K

t �−→
∫
Ω

([TK(R)]σ)2(t, x)η(x) dx, σ > 0 is precompact in C[0, T ].

Note that [TK(R)]σ → [TK(R)] in L2(Ω) for any t ∈ [0, T ] as σ → 0, we obtain

t �−→
∫
Ω

([TK(R)])2(t, x)η(x) dx is in C[0, T ]

for any fixed η(x). Thus, TK(R) ∈ C([0, T ]; L2(Ω)) for any fixed K ≥ 1. It allows us to have

R ∈ (C([0, T ];L1(Ω)))N ,

thanks to (2.14).

Step 3: Final inequality.

Taking integration on (2.11) with respect to t, we have

∫
β(R(t)) dx =

∫
β(R(s)) dx−

t∫ ∫
[∇β(R) ·R− β(R)]divu dx dt,
Ω Ω s Ω
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where 0 < s < t < T . Thanks to

R ∈ (C([0, T ];L1(Ω)))N .

Letting s → 0, thus we have

∫
Ω

β(R(t)) dx =
∫
Ω

β(R0) dx−
t∫

0

∫
Ω

[∇β(R) ·R− β(R)]divu dx dt

for any 0 ≤ t ≤ T . �
With above lemmas in hand, we are ready to show Theorem 2.2.

Proof of Theorem 2.2. Up to a subsequence,

ρK → ρ, nK → n weakly in L∞(0, T ;L2(Ω)), uK → u weakly in L2(0, T ;H1
0 (Ω)), (2.16)

as K → ∞. Passing to the limit as K → ∞ in (2.6) and (2.7) respectively, we have

ρt + div(ρu) = 0, ρ|t=0 = ρ0,

and

nt + div(nu) = 0, n|t=0 = n0.

Using Lemma 2.5 with R = (b, d) and u = u, βσ(b, d) = b2

d+σ , note that

∇βσ(R) ·R− βσ(R) = σ
b2

(d + σ)2 ,

one obtains

∫
Ω

b(t, x)2

d(t, x) + σ
dx =

∫
Ω

b20
d0 + σ

dx− σ

t∫
0

∫
Ω

b2

(d + σ)2 divu dx dt,

for almost everywhere t ∈ [0, T ].
Note that

b2

d + σ
≤ b2

d
and b20

d0 + σ
≤ b20

d0
,

by the dominated convergence theorem, we obtain the following equality by letting σ goes to zero,

∫
Ω

b(t, x)2

d(t, x) dx =
∫
Ω

b20
d0

dx (2.17)

for almost everywhere t ∈ [0, T ].
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By (2.8) and (2.17), we find∫
Ω

bK(t, x)2

dK(t, x) dx =
∫
Ω

bKaK dx ≤
∫
Ω

b(t, x)2

d(t, x) dx =
∫
Ω

ba dx (2.18)

for almost everywhere t ∈ [0, T ].
Thanks to (2.16), setting (bK , dK) = (hK , gK) for Lemma 2.1, one obtains (2.9) for any s > 1. �

3. Faedo–Galerkin approach

In this section, we construct a global weak solution (ρ, n, u) to the following approximation (3.1)–(3.3)
with a finite energy. Motivated by the work of [12], we propose the following approximation system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

nt + div(nu) = εΔn,

ρt + div(ρu) = εΔρ,[
(ρ + n)u

]
t
+ div

[
(ρ + n)u⊗ u

]
+ ∇(nα + ργ) + δ∇(ρ + n)β + ε∇u · ∇(ρ + n)

= μΔu + (μ + λ)∇divu

(3.1)

on Ω × (0, ∞), with initial and boundary condition(
ρ, n, (ρ + n)u

)
|t=0 = (ρ0,δ, n0,δ,M0,δ) on Ω, (3.2)

(∂ρ
∂ν

,
∂n

∂ν
, u)|∂Ω = 0, (3.3)

where ε, δ > 0, β > max{α, γ}, M0,δ = (ρ0,δ + n0,δ)u0,δ and n0,δ, ρ0,δ ∈ C3(Ω), u0,δ ∈ C3
0 (Ω) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < δ ≤ ρ0,δ, n0,δ ≤ δ−
1
2β , (∂n0,δ

∂ν ,
∂ρ0,δ
∂ν )|∂Ω = 0,

lim
δ→0

(
‖ρ0,δ − ρ0‖Lγ(Ω) + ‖n0,δ − n0‖Lα(Ω)

)
= 0,

u0δ = ϕδ√
ρ0,δ+n0,δ

ηδ ∗ ( M0√
ρ0+n0

),
√
ρ0,δ + n0,δu0,δ → M0√

ρ0+n0
in L2(Ω) as δ → 0,

m0,δ → M0 in L1(Ω) as δ → 0,

1
c0
ρ0,δ ≤ n0,δ ≤ c0ρ0,δ if 1

c0
ρ0 ≤ n0 ≤ c0ρ0,

(3.4)

where δ ∈ (0, 1), η is the standard mollifier, ϕδ ∈ C∞
0 (Ω), 0 ≤ ϕδ ≤ 1 on Ω and ϕδ ≡ 1 on 

{
x ∈

Ω|dist(x, ∂Ω) > δ
}
.

We are able to use Faedo–Galerkin approach to construct a global weak solution to (3.1), (3.2) and (3.3). 
To begin with, we consider a sequence of finite dimensional spaces

Xk = [span{ψj}kj=1]3, k ∈ {1, 2, 3, · · ·},

where {ψi}∞i=1 is the set of the eigenfunctions of the Laplacian:⎧⎨⎩−Δψi = λiψi on Ω,

ψ | = 0.
i ∂Ω
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For any given ε, δ > 0, we shall look for the approximate solution uk ∈ C([0, T ]; Xk) (for any fixed T > 0) 
given by the following form:

∫
Ω

(ρk + nk)uk(t) · ψ dx−
∫
Ω

m0,δ · ψ dx =
t∫

0

∫
Ω

[
μΔuk + (μ + λ)∇divuk

]
· ψ dx ds

−
t∫

0

∫
Ω

[
div

[
(ρk + nk)uk ⊗ uk

]
+ ∇(nα

k + ργk) + δ∇(ρk + nk)β + ε∇uk · ∇(ρk + nk)
]
· ψ dx ds

(3.5)

for t ∈ [0, T ] and ψ ∈ Xk, where ρk = ρk(uk) and nk = nk(uk) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tnk + div(nkuk) = εΔnk,

∂tρk + div(ρkuk) = εΔρk,

nk|t=0 = n0,δ, ρk|t=0 = ρ0,δ,

(∂ρk

∂ν , ∂nk

∂ν )|∂Ω = 0.

(3.6)

Due to Lemmas 2.1 and 2.2 in [12], the problem (3.5) can be solved on a short time interval [0, Tk] for 
Tk ≤ T by a standard fixed point theorem on the Banach space C([0, Tk]; Xk). To show that Tk = T , we 
need the uniform estimates resulting from the following energy equality

d

dt

∫
Ω

[ (ρk + nk)|uk|2
2 + Gα(nk) + 1

γ − 1ρ
γ
k + δ

β − 1(ρk + nk)β
]
dx

+
∫
Ω

[
μ|∇uk|2 + (μ + λ)|divuk|2

]
dx

+
∫
Ω

[
εαnα−2

k |∇nk|2 + εγργ−2
k |∇ρk|2 + εβδ(ρk + nk)β−2|∇(ρk + nk)|2

]
dx = 0, on (0, Tk),

(3.7)

where

Gα(nk) =

⎧⎨⎩ nk lnnk − nk + 1, for α = 1,

nα
k

α−1 , for α > 1.

This could be done by differentiating (3.5) with respect to time, taking ψ = uk(t) and using (3.6). We refer 
the readers to [12] for more details. Thus, we obtain a solution (ρk, nk, uk) to (3.5)–(3.6) globally in time t.

The next step is to pass the limit of (ρk, nk, uk) as k → ∞. Following the same arguments of Section 2.3 
of [12], energy equality (3.7) gives us the following bounds

0 <
1
ck

≤ ρk(x, t), nk(x, t) ≤ ck for a.e.(x, t) ∈ Ω × (0, T ), (3.8)

sup
t∈[0,T ]

‖ρk(t)‖γLγ(Ω) ≤ C(ρ0, n0,M0), (3.9)

sup
t∈[0,T ]

‖nk(t)‖αLα(Ω) ≤ C(ρ0, n0,M0) for α ≥ 1, (3.10)

δ sup ‖ρk(t) + nk(t)‖βLβ(Ω) ≤ C(ρ0, n0,M0), (3.11)

t∈[0,T ]
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sup
t∈[0,T ]

‖
√
ρk + nk(t)uk(t)‖2

L2(Ω) ≤ C(ρ0, n0,M0), (3.12)

T∫
0

‖uk(t)‖2
H1

0 (Ω) dt ≤ C(ρ0, n0,M0), (3.13)

ε

T∫
0

(
‖∇ρk(t)‖2

L2(Ω) + ‖∇nk(t)‖2
L2(Ω)

)
dt ≤ C(β, δ, ρ0, n0,M0), (3.14)

and

‖ρk + nk‖Lβ+1(QT ) ≤ C(ε, β, δ, ρ0, n0,M0), (3.15)

where QT = Ω × (0, T ) and β ≥ 4.
We are able to control nk by ρk if some additional initial data is given in (3.16).

Lemma 3.1. If (ρk, nk, uk) is a solution to (3.5) and (3.6) with the initial data satisfying

1
c0

ρ0 ≤ n0 ≤ c0ρ0 (3.16)

on Ω, then the following inequality holds

1
c0

ρk(x, t) ≤ nk(x, t) ≤ c0ρk(x, t) (3.17)

for a.e. (x, t) ∈ QT .

Proof. It is easy to check that nk − c0ρk is a solution of the following parabolic equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(nk − c0ρk)t + div

[
(nk − c0ρk)uk

]
= εΔ(nk − c0ρk),

(nk − c0ρk)|t=0 = n0,δ − c0ρ0,δ,

∇(nk − c0ρk) · ν|∂Ω = 0.

The right inequality of (3.17) can be obtained by applying the maximum principle on it. Similarly, we obtain 
the left inequality of (3.17). �

If the initial data satisfies (3.16) and with (3.9), (3.10), and (3.17), we have

sup
t∈[0,T ]

(
‖ρk(t)‖α1

Lα1 (Ω) + ‖nk(t)‖α1
Lα1 (Ω)

)
≤ C(ρ0, n0,M0), (3.18)

where α1 = max{α, γ}.
Relying on the above uniform estimates, i.e., (3.9)–(3.17) and (3.18), and the Aubin–Lions lemma, we 

are able to recover the global solution to the approximation system (3.1)–(3.3) by passing to the limit for 
(ρk, nk, uk) as k → ∞. We have the following Proposition on the weak solutions of the approximation (3.1), 
(3.2) and (3.3).



260 A. Vasseur et al. / J. Math. Pures Appl. 125 (2019) 247–282
Proposition 3.2. Suppose β > max{4, α, γ}. For any given ε, δ > 0, there exists a global weak solution 
(ρ, n, u) to (3.1), (3.2) and (3.3) such that for any given T > 0, the following estimates

sup
t∈[0,T ]

‖ρ(t)‖γLγ(Ω) ≤ C(ρ0, n0,M0), (3.19)

sup
t∈[0,T ]

‖n(t)‖αLα(Ω) ≤ C(ρ0, n0,M0), (3.20)

δ sup
t∈[0,T ]

‖(ρ(t), n(t))‖β
Lβ(Ω) ≤ C(ρ0, n0,M0), (3.21)

sup
t∈[0,T ]

‖
√
ρ + n(t)u(t)‖2

L2(Ω) ≤ C(ρ0, n0,M0), (3.22)

T∫
0

‖u(t)‖2
H1

0 (Ω) dt ≤ C(ρ0, n0,M0), (3.23)

ε

T∫
0

‖(∇ρ(t),∇n(t))‖2
L2(Ω) dt ≤ C(β, δ, ρ0, n0,M0), (3.24)

and

‖(ρ(t), n(t))‖Lβ+1(QT ) ≤ C(ε, β, δ, ρ0, n0,M0) (3.25)

hold, where the norm ‖(·, ·)‖ denotes ‖ · ‖ + ‖ · ‖, and ρ, n ≥ 0 a.e. on QT .
In addition, if the initial data satisfy 1

c0
ρ0 ≤ n0 ≤ c0ρ0 on Ω, then

⎧⎪⎨⎪⎩
1
c0
ρ ≤ n ≤ c0ρ a.e. on Ω × (0, T ),

sup
t∈[0,T ]

‖(ρ, n)(t)‖α1
Lα1 (Ω) ≤ C(ρ0, n0,M0),

(3.26)

where α1 = max{α, γ}. Finally, there exists r > 1 such that ρt, nt, ∇2ρ, ∇2n ∈ Lr(QT ) and the equations 
(3.1)1 and (3.1)2 are satisfied a.e. on QT .

Remark 3.3. The solution (ρ, n, u) stated in Proposition 3.2 actually depends on ε and δ. We omit the 
dependence in the solution itself for brevity.

4. The vanishing viscosity limit ε → 0+

The goal of this section is to pass to the limit of (ρε, nε, uε) as ε goes to zero. To vanish ε, the uniform 
estimates are needed. Compared to the work of [12], the pressure law involves two variables, which bring 
new difficulty-possible oscillation of ργ + nα. The uniform estimates resulting from the energy inequality in 
Proposition 3.2 and Lemma 4.1 are not enough to handle the weak limit of such a pressure. In Section 4.1, 
we pass to the limits for the weak solution constructed in Proposition 3.2 as ε goes to zero by standard 
compactness argument. In Section 4.2, we will focus on the weak limit of the pressure and the strong 
convergence of ρε and nε. This section 4.2 is where we are using the new compactness Theorem 2.2. In this 
section, let C denote a generic positive constant depending on the initial data and δ but independent of ε.
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4.1. Passing to the limit as ε → 0+

The uniform estimates resulting from (3.19), (3.20), (3.21), and (3.26) are not enough to obtain the 
convergence of the pressure term ργε + nα

ε . Thus we need to obtain higher integrability estimates of the 
pressure term uniformly for ε.

First, following the same argument in [12], we are able to get the following estimate in Lemma 4.1.

Lemma 4.1. Let (ρ, n, u) be the solution stated in Proposition 3.2, then

T∫
0

∫
Ω

(nα+1 + ργ+1 + δρβ+1 + δnβ+1) dx dt ≤ C

for β > 4.

In this step, we fix δ > 0 and shall let ε → 0+. Then the solution (ρ, n, u) constructed in Proposition 3.2
is naturally dressed in the subscript “ε”, i.e., (ρε, nε, uε).

With (3.19)–(3.24), and Lemma 4.1, letting ε → 0+ (take the subsequence if necessary), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρε, nε) → (ρ, n) in C([0, T ];Lβ
weak(Ω)) and weakly in Lβ+1(QT ) as ε → 0+,

(εΔρε, εΔnε) → 0 weakly in L2(0, T ;H−1(Ω)) as ε → 0+,

uε → u weakly in L2(0, T ;H1
0 (Ω)) as ε → 0+,

(ρε + nε)uε → (ρ + n)u in C([0, T ];L
2γ

γ+1
weak) ∩ C([0, T ];H−1(Ω)) as ε → 0+,

(ρεuε, nεuε) → (ρu, nu) in D′(QT ) as ε → 0+,

(ρε + nε)uε ⊗ uε → (ρ + n)u⊗ u in D′(QT ) as ε → 0+,

nα
ε + ργε + δ(ρε + nε)β → nα + ργ + δ(ρ + n)β weakly in L

β+1
β (QT ) as ε → 0+,

ε∇uε · ∇(ρε + nε) → 0 in L1(QT ) as ε → 0+,

(4.1)

and ρ, n ≥ 0.
By virtue of (3.26) and (4.1)1, if 1

c0
ρ0 ≤ n0 ≤ c0ρ0, we have

1
c0

ρε(x, t) ≤ nε(x, t) ≤ c0ρε(x, t) and 1
c0

ρ(x, t) ≤ n(x, t) ≤ c0ρ(x, t) for a.e. (x, t) ∈ QT .

With (4.1)1 and (4.1)4, we get

(
ρ, n, (ρ + n)u

)
|t=0 = (ρ0,δ, n0,δ,M0,δ).

In summary, the limit (ρ, n, u) solves the following system in the sense of distribution on QT for any 
T > 0: ⎧⎪⎪⎨⎪⎪⎩

nt + div(nu) = 0,

ρt + div(ρu) = 0,[
(ρ + n)u

]
+ div

[
(ρ + n)u⊗ u

]
+ ∇(nα + ργ + δ(ρ + n)β) = μΔu + (μ + λ)∇divu

(4.2)
t
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with initial and boundary condition(
ρ, n, (ρ + n)u

)
|t=0 = (ρ0,δ, n0,δ,M0,δ), (4.3)

u|∂Ω = 0, (4.4)

where f(t, x) denotes the weak limit of fε(t, x) as ε → 0.
To this end, we have to show that nα + ργ + δ(ρ + n)β = nα + ργ + δ(ρ + n)β , which is a nonlinear 

two-variable function in term of ρ and n. It seems that the argument in [12] fails here due to the difficulty 
resulting from the new variable n. New ideas are necessary to handle this weak limit. We are going to focus 
on this issue next subsection.

4.2. The weak limit of pressure

The main task of this subsection is to handle the possible oscillation for the pressure nα
ε +ργε +δ(ρε+nε)β . 

To achieve this goal, we have to show the strong convergence of ρε and nε. It allows us to have the following 
Proposition on the weak limit of pressure.

Proposition 4.2.

nα + ργ + δ(ρ + n)β = nα + ργ + δ(ρ + n)β

a.e. on QT .

To prove this proposition, we shall rely on the following lemmas. The first one is on the effective viscous 
flux associated with pressure involving two variables. In particular, let

Hε :=nα
ε + ργε + δ(ρε + nε)β − (2μ + λ)divuε,

H :=nα + ργ + δ(ρ + n)β − (2μ + λ)divu,

then we will have the following lemma. The proof is very similar to the work of [12].

Lemma 4.3. Let (ρε, nε, uε) be the solution stated in Lemma 3.2, and (ρ, n, u) be the limit in the sense of 
(4.1), then

lim
ε→0+

T∫
0

ψ

∫
Ω

φHε(ρε + nε) dx dt =
T∫

0

ψ

∫
Ω

φH(ρ + n) dx dt, (4.5)

for any ψ ∈ C∞
0 (0, T ) and φ ∈ C∞

0 (Ω).

The key idea of proving Proposition 4.2 is to rewrite the terms related pressure as follows

nα
ε + ργε =Aα

ε d
α
ε + Bγ

ε d
γ
ε = Aαdαε + Bγdγε + (Aα

ε −Aα)dαε + (Bγ
ε −Bγ)dγε ,

nε + ρε =(Aε + Bε)dε = (A + B)dε + (Aε −A + Bε −B)dε,

where dε = ρε + nε, d = ρ + n, (Aε, Bε) = (nε

dε
, ρε

dε
) if dε �= 0, (A, B) = (nd , 

ρ
d ) if d �= 0, 0 ≤ Aε, Bε, A, B ≤ 1, 

and (Aεdε, Bεdε) = (nε, ρε), (Ad, Bd) = (n, ρ), (ρ, n) is the limit of (ρε, nε) in a suitable weak topology. We 
are able to apply the ideas in [12] to handle the product Aαdαε + Bγdγε and (A + B)dε, because A and B
are bounded in L∞(0, T ; L∞(Ω)) and they are viewed as the coefficients. The difficult part is to show that 
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the remainder tends to zero as ε goes to zero. Theorem 2.2 allows us to show the terms 
[
(Aα

ε − Aα)dαε +

(Bγ
ε −Bγ)dγε

]
(nε + ρε) and 

(
Aαdαε + Bγdγε

)
(Aε −A + Bε −B)dε approach to zero as ε goes to zero.

We divide the proof of Proposition 4.2 into several steps as follows:

Step 1: Control ρε and nε in L logL.

The current step of our proof is to control ρε and nε in the space of L logL. This helps us to obtain the 
strong convergence of ρε and nε. We give our control in the following lemma.

Lemma 4.4. Let (ρε, nε) be the solution stated in Proposition 3.2, and (ρ, n) be the limit in the sense of 
(4.1), then ∫

Ω

[
ρε log ρε − ρ log ρ + nε lognε − n log n

]
(t) dx

≤
t∫

0

∫
Ω

(ρ + n)divu dx ds−
t∫

0

∫
Ω

(ρε + nε)divuε dx ds

(4.6)

for a.e. t ∈ (0, T ).

Proof. Since nε and ρε solve (3.1)1 and (3.1)2 a.e. on QT , respectively, we have

[βj(fε)]t + div
(
βj(fε)uε

)
+
[
β′
j(fε)fε − βj(fε)

]
divuε = εΔβj(fε) − εβ′′

j (fε)|∇fε|2 on QT, (4.7)

where fε = ρε, nε, and βj ∈ C2[0, ∞).
Taking βj(z) = (z + 1

j ) log(z + 1
j ) in (4.7), and integrating it over Ω × (0, t) for t ∈ [0, T ], we have

∫
Ω

(fε + 1
j
) log(fε + 1

j
)(t) dx +

t∫
0

∫
Ω

[
fε −

1
j

log(fε + 1
j
)
]
divuε dx ds

≤
∫
Ω

(f0,ε + 1
j
) log(f0,ε + 1

j
) dx,

(4.8)

where we have used the convexity of βj and the boundary condition (3.3). Letting j → ∞ in (4.8), one 
obtains

∫
Ω

(fε log fε)(t) dx +
t∫

0

∫
Ω

fεdivuε dx ds ≤
∫
Ω

f0,δ log f0,δ dx, (4.9)

where fε = ρε, nε and f0,δ = ρ0,δ, n0,δ.
Since the limit (n, u) and (ρ, u) solve (4.2)1 and (4.2)2 in the sense of renormalized solutions, we can take 

β(z) = z log z in accordance with Remark 1.1 in [12] or by approximating the function z log z by a sequence 
of such the β(z) stated in Lemma 2.5 and then passing to the limit. This allows us to have

∫
Ω

(f log f)(t) dx +
t∫

0

∫
Ω

fdivu dx ds =
∫
Ω

f0,δ log f0,δ dx, (4.10)

where f = ρ, n and f0,δ = ρ0,δ, n0,δ. Thanks to (4.9) and (4.10), (4.6) follows.
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Step 2: Control the right hand side of (4.6)

It is crucial to control the right hand side of (4.6). Thanks to Theorem 2.2, we show the following lemma 
which can help us to finish this step.

Lemma 4.5. Let (ρε, nε) be the solution stated in Proposition 3.2, and (ρ, n) be the limit in the sense of 
(4.1), then

t∫
0

ψ

∫
Ω

φ(ρ + n)nα + ργ dx ds ≤
t∫

0

ψ

∫
Ω

φ(ρ + n)(nα + ργ) dx ds

for any t ∈ [0, T ] and any ψ ∈ C[0, t], φ ∈ C(Ω) where ψ, φ ≥ 0.

Proof. Note that

nα
ε + ργε =Aα

ε d
α
ε + Bγ

ε d
γ
ε = Aαdαε + Bγdγε + (Aα

ε −Aα)dαε + (Bγ
ε −Bγ)dγε ,

nε + ρε =(Aε + Bε)dε = (A + B)dε + (Aε −A + Bε −B)dε,

where dε = ρε + nε, d = ρ + n, (Aε, Bε) = (nε

dε
, ρε

dε
) if dε �= 0, (A, B) = (nd , 

ρ
d ) if d �= 0, 0 ≤ Aε, Bε, A, B ≤ 1, 

and (Aεdε, Bεdε) = (nε, ρε), (Ad, Bd) = (n, ρ), (ρ, n) is the limit of (ρε, nε) in a suitable weak topology.
For any ψ ∈ C([0, t]), φ ∈ C(Ω) where ψ, φ ≥ 0, we have

t∫
0

ψ

∫
Ω

φ(nα
ε + ργε )(ρε + nε) dx ds

=
t∫

0

ψ

∫
Ω

φ(Aαdαε + Bγdγε )(A + B)dε dx ds

+
t∫

0

ψ

∫
Ω

φ(Aαdαε + Bγdγε )(Aε −A + Bε −B)dε dx ds

+
t∫

0

ψ

∫
Ω

φ
[
(Aα

ε −Aα)dαε + (Bγ
ε −Bγ)dγε

]
(nε + ρε) dx ds

=
3∑

i=1
IIi.

(4.11)

For II2, there exists a positive integer k0 large enough such that

max{ k0γ

k0 − 1 ,
k0α

k0 − 1} ≤ β (4.12)

due to the assumption that max{α, γ} < β.
Using the Hölder inequality, Lemma 4.1 and (4.12), we have

|II2| ≤C

⎛⎝ T∫ ∫
dε|Aε −A|k0 dx dt

⎞⎠
1
k0

⎛⎝ T∫ ∫
dε|Aαdαε + Bγdγε |

k0
k0−1 dx dt

⎞⎠
k0−1
k0
0 Ω 0 Ω
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+ C

⎛⎝ T∫
0

∫
Ω

dε|Bε −B|k0 dx dt

⎞⎠
1
k0

⎛⎝ T∫
0

∫
Ω

dε|Aαdαε + Bγdγε |
k0

k0−1 dx dt

⎞⎠
k0−1
k0

(4.13)

≤C

⎛⎝ T∫
0

∫
Ω

dε|Aε −A|k0 dx dt

⎞⎠
1
k0

+ C

⎛⎝ T∫
0

∫
Ω

dε|Bε −B|k0 dx dt

⎞⎠
1
k0

.

Choosing νk = ε for Theorem 2.2, we conclude that

⎛⎝ T∫
0

∫
Ω

dε|Aε −A|k0 dx dt

⎞⎠
1
k0

→ 0,

⎛⎝ T∫
0

∫
Ω

dε|Bε −B|k0 dx dt

⎞⎠
1
k0

→ 0

(4.14)

as ε goes to zero. In fact, dε ∈ L∞(0, T ; Lβ(Ω)) for β > 4, and uε ∈ L2(0, T ; H1
0 (Ω)), and

√
ε‖∇ρε‖L2(0,T ;L2(Ω)) ≤ C0,

√
ε‖∇nε‖L2(0,T ;L2(Ω)) ≤ C0,

and for any ε > 0 and any t > 0:

∫
Ω

b2ε
dε

dx ≤
∫
Ω

b20
d0

dx (4.15)

where dε = ρε+nε, bε = ρε, nε, and (4.15) is obtained in Remark 2.4. Thus, we are able to apply Theorem 2.2
to deduce (4.14). Hence we have II2 → 0 as ε → 0.

For II3, there exists a positive integer k1 large enough such that

(α + 1 − 1
k1

) k1

k1 − 1 < β + 1,

(γ + 1 − 1
k1

) k1

k1 − 1 < β + 1,
(4.16)

due to the assumption α < β. We employ the Hölder inequality to have

|II3| ≤C

⎛⎝ T∫
0

∫
Ω

d
(α+1− 1

k1
) k1
k1−1

ε dx dt

⎞⎠
k1−1
k1

⎛⎝ T∫
0

∫
Ω

dε
∣∣Aα

ε −Aα
∣∣k1

dx dt

⎞⎠
1
k1

+ C

⎛⎝ T∫
0

∫
Ω

d
(γ+1− 1

k1
) k1
k1−1

ε dx dt

⎞⎠
k1−1
k1

⎛⎝ T∫
0

∫
Ω

dε
∣∣Bγ

ε −Bγ
∣∣k1

dx dt

⎞⎠
1
k1

≤C

⎛⎝ T∫
0

∫
Ω

dε
∣∣Aα

ε −Aα
∣∣k1

dx dt

⎞⎠
1
k1

+ C

⎛⎝ T∫
0

∫
Ω

dε
∣∣Bγ

ε −Bγ
∣∣k1

dx dt

⎞⎠
1
k1

→ 0

(4.17)

as ε → 0+, where we have used (3.26), (4.16), Lemma 4.1, and the fact that
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T∫
0

∫
Ω

dε
∣∣Aα

ε −Aα
∣∣k1

dx dt ≤αk1

T∫
0

∫
Ω

dε
(
max{Aε, A}

)α−1∣∣Aε −A
∣∣k1

dx dt

≤C

T∫
0

∫
Ω

dε
∣∣Aε −A

∣∣k1
dx dt → 0,

T∫
0

∫
Ω

dε
∣∣Bγ

ε −Bγ
∣∣k1

dx dt ≤γk1

T∫
0

∫
Ω

dε
(
max{Bε, B}

)γ−1∣∣Bε −B
∣∣k1

dx dt

≤C

T∫
0

∫
Ω

dε
∣∣Bε −B

∣∣k1
dx dt → 0

(4.18)

as ε → 0+, due to Theorem 2.2 with νK = ε.
By virtue of (4.11), (4.13) and (4.17), one deduces that

lim
ε→0+

t∫
0

ψ

∫
Ω

φ(nα
ε + ργε )(ρε + nε) dx ds =

t∫
0

ψ

∫
Ω

φ(A + B)(Aαdα+1 + Bγdγ+1) dx ds

≥
t∫

0

ψ

∫
Ω

φ(A + B)(Aαdαd + Bγdγd) dx ds

=
t∫

0

ψ

∫
Ω

φd(Aαdα + Bγdγ) dx ds

(4.19)

where we have used A + B = 1, dα+1 ≥ dαd, and dγ+1 ≥ dγd, because the functions z �→ zα(or zγ) and 
z �→ z are increasing functions.

On the other hand,

t∫
0

ψ

∫
Ω

φ(ρ + n)nα + ργ dx ds

= lim
ε→0+

t∫
0

ψ

∫
Ω

φ(ρ + n)(nα
ε + ργε ) dx ds

= lim
ε→0+

t∫
0

ψ

∫
Ω

φd(Aαdαε + Bγdγε ) dx ds + lim
ε→0+

t∫
0

ψ

∫
Ω

φddαε (Aα
ε −Aα) dx ds

+ lim
ε→0+

t∫
0

ψ

∫
Ω

φddγε (Bγ
ε −Bγ) dx ds

=
t∫

0

ψ

∫
Ω

φd(Aαdα + Bγdγ) dx ds,

(4.20)

thanks to
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lim
ε→0+

t∫
0

ψ

∫
Ω

φddαε (Aα
ε −Aα) dx ds → 0, and lim

ε→0+

t∫
0

ψ

∫
Ω

φddγε (Bγ
ε −Bγ) dx ds → 0,

as ε → 0+.
By (4.19) and (4.20), we complete the proof of the lemma. �
Since ψ and φ are arbitrary, we immediately get

Corollary 4.6. Let (ρε, nε) be the solution stated in Proposition 3.2, and (ρ, n) be the limit in the sense of 
(4.1), then

(ρ + n)nα + ργ ≤ (ρ + n)(nα + ργ) (4.21)

a.e. on Ω × (0, T ).

Now we are ready to control the right hand side of (4.6) in the following lemma.

Lemma 4.7. Let (ρε, nε) be the solution stated in Lemma 3.2, and (ρ, n) be the limit in the sense of (4.1), 
then

t∫
0

∫
Ω

(ρ + n)divu dx ds ≤ lim
ε→0+

t∫
0

∫
Ω

(ρε + nε)divuε dx ds (4.22)

for a.e. t ∈ (0, T ).

Proof. For ψj ∈ C∞
0 (0, t), φj ∈ C∞

0 (Ω) given by

ψj ∈ C∞
0 (0, T ), ψj(t) ≡ 1 for any t ∈ [ 1

j
, T − 1

j
], 0 ≤ ψj ≤ 1, ψj → 1, (4.23)

as j → ∞, and

φj ∈ C∞
0 (Ω), φj(x) ≡ 1 for any x ∈

{
x ∈ Ω

∣∣dist(x, ∂Ω) ≥ 1
j
}
, 0 ≤ φj ≤ 1, φj → 1, (4.24)

as j → ∞, respectively, then

t∫
0

∫
Ω

(ρ + n)divu dx ds

=
t∫

0

ψj

∫
Ω

φj(ρ + n)divu dx ds +
t∫

0

∫
Ω

(1 − ψjφj)(ρ + n)divu dx ds

= 1
2μ + λ

t∫
0

ψj

∫
Ω

φj(ρ + n)nα + ργ dx ds + 1
2μ + λ

t∫
0

ψj

∫
Ω

φj(ρ + n)δ(ρ + n)β dx ds

− 1
2μ + λ

t∫
0

ψj

∫
Ω

φj(ρ + n)H dxds +
t∫

0

∫
Ω

(1 − ψjφj)(ρ + n)divu dx ds

(4.25)
=RHS1 + RHS2 + RHS3 + RHS4,
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where we have used

(2μ + λ)divu = nα + ργ + δ(ρ + n)β −H,

and

nα + ργ + δ(ρ + n)β = nα + ργ + δ(ρ + n)β .

For RHS2, we have

RHS2 = 1
2μ + λ

t∫
0

ψj

∫
Ω

φj(ρ + n)δ(ρ + n)β dx ds

≤ 1
2μ + λ

lim inf
ε→0+

t∫
0

ψj

∫
Ω

φjδ(ρε + nε)(ρε + nε)β dx ds,

(4.26)

because z �→ z and z �→ zβ are increasing functions.
By virtue of (4.25), (4.21), (4.26), and (4.5), we have

t∫
0

∫
Ω

(ρ + n)divu dx ds

≤ 1
2μ + λ

lim
ε→0+

t∫
0

ψj

∫
Ω

φj(nα
ε + ργε )(ρε + nε) dx ds

+ 1
2μ + λ

lim inf
ε→0+

t∫
0

ψj

∫
Ω

φj(ρε + nε)δ(ρε + nε)β dx ds

− 1
2μ + λ

lim
ε→0+

t∫
0

ψj

∫
Ω

φj(ρε + nε)Hε dx ds +
t∫

0

∫
Ω

(1 − ψjφj)(ρ + n)divu dx ds

≤ lim
ε→0+

t∫
0

∫
Ω

(ρε + nε)divuε dx ds + lim
ε→0+

t∫
0

∫
Ω

(ψjφj − 1)(ρε + nε)divuε dx ds

+
t∫

0

∫
Ω

(1 − ψjφj)(ρ + n)divu dx ds.

(4.27)

Letting j → ∞ in (4.27), we complete the proof of the lemma. �
Step 3: Strong convergence of ρε and nε

The main task is to show the strong convergence of ρε and nε. This yields Proposition 4.2. In particular, 
with (4.22), letting ε → 0+ in (4.6), we deduce that∫ [

ρ log ρ− ρ log ρ + n logn− n logn
]
(t) dx ≤ 0.
Ω



A. Vasseur et al. / J. Math. Pures Appl. 125 (2019) 247–282 269
Thanks to the convexity of z �→ z log z, we have

ρ log ρ ≥ ρ log ρ and n log n ≥ n log n

a.e. on QT . This turns out that∫
Ω

[
ρ log ρ− ρ log ρ + n log n− n logn

]
(t) dx = 0.

Hence we get

ρ log ρ = ρ log ρ and n log n = n log n

a.e. on QT , which combined with Lemma 4.1 implies strong convergence of ρε, nε in Lβ(QT ). Thus we 
complete the proof.

With Proposition 4.2, we recover a global weak solution to the system (4.2), (4.3) and (4.4) with 
nα + ργ + δ(ρ + n)β replaced by nα + ργ + δ(ρ + n)β .

Proposition 4.8. Suppose β > max{4, α, γ}. For any given δ > 0, there exists a global weak solution 
(ρδ, nδ, uδ) to the following system over Ω × (0, ∞):

⎧⎪⎪⎨⎪⎪⎩
nt + div(nu) = 0,

ρt + div(ρu) = 0,[
(ρ + n)u

]
t
+ div

[
(ρ + n)u⊗ u

]
+ ∇(nα + ργ + δ(ρ + n)β) = μΔu + (μ + λ)∇divu,

(4.28)

with initial and boundary condition

(
ρ, n, (ρ + n)u

)
|t=0 = (ρ0,δ, n0,δ,M0,δ) on Ω, (4.29)

u|∂Ω = 0 for t ≥ 0, (4.30)

such that for any given T > 0, the following estimates

sup
t∈[0,T ]

‖ρδ(t)‖γLγ(Ω) ≤ C(ρ0, n0,M0), (4.31)

sup
t∈[0,T ]

‖nδ(t)‖αLα(Ω) ≤ C(ρ0, n0,M0), (4.32)

δ sup
t∈[0,T ]

‖(ρδ(t), nδ(t))‖βLβ(Ω) ≤ C(ρ0, n0,M0), (4.33)

sup
t∈[0,T ]

‖
√
ρδ + nδ(t)uδ(t)‖2

L2(Ω) ≤ C(ρ0, n0,M0), (4.34)

T∫
0

‖uδ(t)‖2
H1

0 (Ω) dt ≤ C(ρ0, n0,M0), (4.35)

and

‖(ρδ(t), nδ(t))‖Lβ+1(Q ) ≤ C(β, δ, ρ0, n0,M0) (4.36)

T
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hold, where the norm ‖(·, ·)‖ denotes ‖ · ‖ + ‖ · ‖. Besides, if 1
c0
ρ0 ≤ n0 ≤ c0ρ0, we have

⎧⎪⎨⎪⎩
1
c0
ρδ(x, t) ≤ nδ(x, t) ≤ c0ρδ(x, t) for a.e. (x, t) ∈ QT ,

sup
t∈[0,T ]

‖(ρδ, nδ)(t)‖α1
Lα1 (Ω) ≤ C(ρ0, n0,M0),

(4.37)

where α1 = max{α, γ}.

5. Passing to the limit in the artificial pressure term as δ → 0+

In this section, we shall recover the weak solution to (1.1)–(1.3) by passing to the limit of (ρδ, nδ, uδ)
as δ → 0. Note that the estimate (4.36) depends on δ. Thus to begin with, we have to get the higher 
integrability estimates of the pressure term uniformly for δ. The new compactness Theorem 2.2 is crucial 
for the proof of section 5.2.

Let C be a generic constant independent of δ which will be used throughout this section.

5.1. Passing to the limit as δ → 0+

We can follow the similar argument as in [12] to have the higher integrability estimates of ρ and n in the 
following lemma. We only need to modify the proof a little bit on n.

Lemma 5.1. Let (ρδ, nδ, uδ) be the solution stated in Proposition 4.8, then

T∫
0

∫
Ω

(nα+θ1
δ + ργ+θ2

δ + δnβ+θ1
δ + δρβ+θ2

δ ) dxdt ≤ C(θ1, θ2) (5.1)

for any positive constants θ1 and θ2 satisfying

⎧⎨⎩θ1 < α
3 and θ1 ≤ min{1, 2α

3 − 1}; θ2 < γ
3 and θ2 ≤ min{1, 2γ

3 − 1} if α, γ ∈ (3
2 ,∞),

θ < max{α,γ}
3 and θ ≤ min{1, 2 max{α,γ}

3 − 1} if γ ∈ ( 3
2 ,∞), α ∈ [1,∞), and 1

c0
ρ0 ≤ n0 ≤ c0ρ0,

where θ = θ1 = θ2.

In view of (5.1) and (4.37), we have the following corollary.

Corollary 5.2. Let (ρδ, nδ, uδ) be the solution stated in Proposition 4.8, if 1
c0
ρ0 ≤ n0 ≤ c0ρ0, then

T∫
0

∫
Ω

ρ
max{α+θ1,γ+θ2}
δ + n

max{α+θ1,γ+θ2}
δ dx dt ≤ C. (5.2)

With (4.31), (4.32), (4.34), (4.35), (4.37), (5.1), and (5.2), letting δ → 0+ (take the subsequence if 
necessary), we have
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Case 1. α, γ ∈ (9
5 , ∞), and max{3γ

4 , γ − 1, 3(γ+1)
5 } < α < min{4γ

3 , γ + 1, 5γ3 − 1}.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρδ → ρ in C([0, T ];Lγ
weak(Ω)) and weakly in Lγ+θ2(QT ) as δ → 0+,

nδ → n in C([0, T ];Lα
weak(Ω)) and weakly in Lα+θ1(QT ) as δ → 0+,

uδ → u weakly in L2(0, T ;H1
0 (Ω)) as δ → 0+,

(ρδ + nδ)uδ → (ρ + n)u in C([0, T ];L
2 min{γ,α}
min{γ,α}+1
weak ) ∩ C([0, T ];H−1(Ω)) as δ → 0+,

(ρδuδ, nδuδ) → (ρu, nu) in D′(QT ) as δ → 0+,

(ρδ + nδ)uδ ⊗ uδ → (ρ + n)u⊗ u in D′(QT ) as δ → 0+,

nα
δ + ργδ → nα + ργ weakly in Lmin{ γ+θ2

α ,
α+θ1

γ }(QT ) as δ → 0+,

δ(ρδ + nδ)β → 0 in L1(QT ) as δ → 0+.

(5.3)

Case 2. α ∈ [1, ∞), γ ∈ (9
5 , ∞), and 1

c0
ρ0 ≤ n0 ≤ c0ρ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρδ, nδ) → (ρ, n) in C([0, T ];Lmax{γ,α}
weak (Ω)) and weakly in Lmax{α+θ1,γ+θ2}(QT ) as δ → 0+,

uδ → u weakly in L2(0, T ;H1
0 (Ω)) as δ → 0+,

(ρδ + nδ)uδ → (ρ + n)u in C([0, T ];L
2 max{γ,α}
max{γ,α}+1
weak ) ∩ C([0, T ];H−1(Ω)) as δ → 0+,

(ρδuδ, nδuδ) → (ρu, nu) in D′(QT ) as δ → 0+,

(ρδ + nδ)uδ ⊗ uδ → (ρ + n)u⊗ u in D′(QT ) as δ → 0+,

nα
δ + ργδ → nα + ργ weakly in Lmax{ γ+θ2

α ,
α+θ1

γ }(QT ) as δ → 0+,

δ(ρδ + nδ)β → 0 in L1(QT ) as δ → 0+,

1
c0
ρδ(x, t) ≤ nδ(x, t) ≤ c0ρδ(x, t), for a.e., (x, t) ∈ QT ,

1
c0
ρ(x, t) ≤ n(x, t) ≤ c0ρ(x, t), for a.e., (x, t) ∈ QT .

(5.4)

In summary, the limit (ρ, n, u) solves the following system in the sense of distribution over Ω × [0, T ] for 
any given T > 0:

⎧⎪⎪⎨⎪⎪⎩
nt + div(nu) = 0,

ρt + div(ρu) = 0,[
(ρ + n)u

]
t
+ div

[
(ρ + n)u⊗ u

]
+ ∇(ργ + nα) = μΔu + (μ + λ)∇divu,

(5.5)

with initial and boundary condition

(ρ, n, (ρ + n)u)|t=0 = (ρ0, n0,M0) on Ω, (5.6)

u|∂Ω = 0 for t ≥ 0, (5.7)

where the convergence of the approximate initial data in (4.29) is due to (3.4).
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To recover a weak solution to (1.1)–(1.3), we only need to show the following claim:

• Claim. ργ + nα = ργ + nα.

5.2. The weak limit of pressure

The objective of this subsection is to show the strong convergence of ρδ and nδ as δ goes to zero. This 
allows us to prove ργ + nα = ργ + nα as δ → 0. From now, we need that ρδ is bounded in Lq(QT ) for some 
q > 2. By Lemma 5.1, we need the restriction γ > 9

5 .
We consider a family of cut-off functions introduced in [12] and references therein, i.e.,

Tk(z) = kT ( z
k

), z ∈ R, k = 1, 2, · · ·

where T ∈ C∞(R) satisfying

T (z) = z for z ≤ 1, T (z) = 2 for z ≥ 3. T is concave.

The cut-off functions will be used in particular to handle the cross terms due to the two-variable pressure, 
see the proof of Lemma 5.5. Since ρδ ∈ L2(QT ), uδ ∈ L2(0, T ; H1

0 (Ω)), Lemma 2.5 suggests that (ρδ, uδ) is 
a renormalized solution of (5.5)2. Thus we have

[Tk(ρδ)]t + div[Tk(ρδ)uδ] + [T ′
k(ρδ)ρδ − Tk(ρδ)]divuδ = 0 in D′(QT ). (5.8)

For any given k, Tk(ρδ) is bounded in L∞(QT ). Passing to the limit as δ → 0+ (taking the subsequence 
if necessary), we have

Tk(ρδ) → Tk(ρ) weak* in L∞(QT ),
Tk(ρδ) → Tk(ρ) in C([0, T ];Lp

weak(Ω)), for any p ∈ [1,∞),
Tk(ρδ) → Tk(ρ) in C([0, T ];H−1(Ω)),
[T ′

k(ρδ)ρδ − Tk(ρδ)]divuδ → [T ′
k(ρ)ρ− Tk(ρ)]divu weakly in L2(QT ).

This yields

[Tk(ρ)]t + div[Tk(ρ)u] + [T ′
k(ρ)ρ− Tk(ρ)]divu = 0 in D′(R3 × (0, T )). (5.9)

Similarly, we have

[Tk(nδ)]t + div[Tk(nδ)uδ] + [T ′
k(nδ)nδ − Tk(nδ)]divuδ = 0 in D′(QT ), (5.10)

and

[Tk(n)]t + div[Tk(n)u] + [T ′
k(n)n− Tk(n)]divu = 0 in D′(R3 × (0, T )). (5.11)

Denote

Hδ :=ργδ + nα
δ − (2μ + λ)divuδ,

H :=ργ + nα − (2μ + λ)divu.

We will have the following Lemma on Hδ and H.



A. Vasseur et al. / J. Math. Pures Appl. 125 (2019) 247–282 273
Lemma 5.3. Let (ρδ, nδ, uδ) be the solution stated in Proposition 4.8 and (ρ, n, u) be the limit, then

lim
δ→0+

T∫
0

ψ

∫
Ω

φHδ

[
Tk(ρδ) + Tk(nδ)

]
dx dt =

T∫
0

ψ

∫
Ω

φH
[
Tk(ρ) + Tk(n)

]
dx dt, (5.12)

for any ψ ∈ C∞
0 (0, T ) and φ ∈ C∞

0 (Ω).

Proof. The proof is similar to the work of [12]. �
Now let us focus on the following Proposition.

Proposition 5.4. For any α, γ > 9
5 and max{ 3γ

4 , γ − 1, 3(γ+1)
5 } < α < min{4γ

3 , γ + 1, 5γ3 − 1}, then

nα + ργ = nα + ργ (5.13)

a.e. on QT . In addition, if the initial data satisfy

1
c0

ρ0 ≤ n0 ≤ c0ρ0,

then for α ≥ 1, γ > 9
5 , (5.13) holds.

There are two steps to prove it.

Step 1: Study for the weak limit of ργδ + nα
δ

Relying on Theorem 2.2 with νK = 0, we are able to show the following lemma. It is crucial to obtain 
Proposition 5.4.

Lemma 5.5. Let (ρδ, nδ) be the solutions constructed in Proposition 4.8, and (ρ, n) be the limit, then

t∫
0

ψ

∫
Ω

φ
[
Tk(ρ) + Tk(n)

](
ργ + nα

)
dx ds ≤

t∫
0

ψ

∫
Ω

φ
[
Tk(ρ) + Tk(n)

](
ργ + nα

)
dx ds, (5.14)

for any t ∈ [0, T ] and any ψ ∈ C[0, t], φ ∈ C(Ω) where ψ, φ ≥ 0, α, γ > 9
5 and

max{3γ
4 , γ − 1, 3(γ + 1)

5 } < α < min{4γ
3 , γ + 1, 5γ

3 − 1}.

In additional, if initial data satisfies

1
c0

ρ0 ≤ n0 ≤ c0ρ0,

then for α ≥ 1, γ > 9
5 , (5.14) holds.
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Proof.
lim

δ→0+

t∫
0

ψ

∫
Ω

φ
[
Tk(ρδ) + Tk(nδ)

](
ργδ + nα

δ

)
dx ds

= lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(ρδ)ργδ dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(ρδ)nα
δ dx ds

+ lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(nδ)ργδ dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(nδ)nα
δ dx ds

=
4∑

i=1
IVi.

(5.15)

For IV1, since z �→ Tk(z) and z �→ zγ are increasing functions, we have

0 ≤ lim
δ→0+

t∫
0

ψ

∫
Ω

φ
[
Tk(ρδ) − Tk(ρ)

][
ργδ − ργ

]
dx ds

=
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds−
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds−
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds

+
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds

=
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds−
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds

+
t∫

0

ψ

∫
Ω

φ
[
Tk(ρ) − Tk(ρ)

](
ργ − ργ

)
dx ds

≤
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds−
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds

(5.16)

where we have used the fact ργ ≥ ργ and Tk(ρ) ≤ Tk(ρ), which could be done by the convexity of z �→ zγ

and the concavity of z �→ Tk(z).
Thanks to (5.16), we have

t∫
0

ψ

∫
Ω

φTk(ρ)ργ dx ds ≤
t∫

0

ψ

∫
Ω

φTk(ρ)ργ dx ds = lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(ρδ)ργδ dx ds = IV1. (5.17)

Similar to (5.17), we have

t∫
0

ψ

∫
Ω

φTk(n)nα dx ds ≤ lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(nδ)nα
δ dx ds = IV4. (5.18)

For IV2, we need to discuss the sizes of α and γ in order to guarantee the boundedness of ραδ and nγ
δ in 

Lq(QT ) for some q > 1.
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Case 1. α, γ > 9
5 and max{3γ

4 , γ − 1, 3(γ+1)
5 } < α < min{4γ

3 , γ + 1, 5γ3 − 1}.
In this case, there exist two positive constants θ1 ∈ (γ − α, min{α

3 , 1, 
2α
3 − 1}) and θ2 ∈ (α − γ,

min{γ
3 , 1, 

2γ
3 − 1}), since max{3γ

4 , γ − 1, 3(γ+1)
5 } < α < min{4γ

3 , γ + 1, 5γ3 − 1} implies that

γ − α < min{α3 , 1,
2α
3 − 1}, and α− γ < min{γ3 , 1,

2γ
3 − 1}.

Note that we are able to take θ1 and θ2 here the same as those in Lemma 5.1. Then there exists a positive 
integer k2 large enough such that ⎧⎨⎩0 < αk2

k2−1 − 1
k2−1 < γ + θ2,

0 < αk2
k2−1 − 1

k2−1 < α + θ1.
(5.19)

In this case, dδ = ρδ + nδ is bounded in L
αk2
k2−1− 1

k2−1 (QT ). Then

IV2 = lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(ρδ)dαδ (Aα
δ −Aα) dx ds + lim

δ→0+

t∫
0

ψ

∫
Ω

φTk(ρδ)dαδAα dx ds

≥− 2kC lim
δ→0+

( t∫
0

∫
Ω

dδ
∣∣Aα

δ −Aα
∣∣k2

dx ds
) 1

k2
( t∫

0

∫
Ω

d
αk2
k2−1− 1

k2−1
δ dx ds

) k2−1
k2

+ lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(Bdδ)dαδAα dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φ[Tk(Bδdδ) − Tk(Bdδ)]dαδAα dx ds

≥− 2kCα lim
δ→0+

( t∫
0

∫
Ω

dδ

∣∣∣(max{Aδ, A}
)α−1∣∣Aδ −A

∣∣∣∣∣k2
dx dt

) 1
k2

+
t∫

0

ψ

∫
Ω

φTk(Bd)dαAα dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φ[Tk(Bδdδ) − Tk(Bdδ)]dαδAα dx ds

≥− 2kCα lim
δ→0+

( t∫
0

∫
Ω

dδ
∣∣Aδ −A

∣∣k2
dx dt

) 1
k2

+
t∫

0

ψ

∫
Ω

φTk(Bd)dαAα dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φ[Tk(Bδdδ) − Tk(Bdδ)]dαδAα dx ds,

(5.20)

where (Aδ, Bδ) = (nδ

dδ
, ρδ

dδ
) with dδ = ρδ + nδ, (A, B) = (nd , 

ρ
d ) with d = ρ + n.

In view of Theorem 2.2 with νK = 0, (5.20), and the arguments similar to (5.16), we have

IV2 ≥
t∫

0

ψ

∫
Ω

φTk(Bd) dαAα dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φ[Tk(Bδdδ) − Tk(Bdδ)]dαδAα dx ds

=
t∫

0

ψ

∫
Ω

φTk(ρ) dαAα dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φ
(
Tk(Bdδ) − Tk(ρδ)

)
dαAα dx ds

+ lim
δ→0+

t∫
ψ

∫
φ[Tk(ρδ) − Tk(Bdδ)]dαδAα dx ds (5.21)
0 Ω
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=
t∫

0

ψ

∫
Ω

φTk(ρ) nα dx ds + lim
δ→0+

t∫
0

ψ

∫
Ω

φ
(
Tk(Bdδ) − Tk(ρδ)

)
dαAα dx ds+

lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(ρ) (dαδAα − nα
δ ) dx ds + lim

δ→0+

t∫
0

ψ

∫
Ω

φ[Tk(ρδ) − Tk(Bdδ)]dαδAα dx ds.

In view of Theorem 2.2 with νK = 0, in particular, of (2.9), we have⎧⎨⎩nδ −Adδ → 0 a.e. in QT ,

ρδ −Bdδ → 0 a.e. in QT ,
(5.22)

as δ → 0+ (take the subsequence if necessary). (5.22)2 implies that

Tk

(
Bdδ

)
− Tk

(
ρδ
)
→ 0 a.e. in QT (5.23)

as δ → 0+ (take the subsequence if necessary).
Since 

(
Tk(Bdδ) −Tk(ρδ)

)
dαAα, Tk(ρ) (dαδAα−nα

δ ), and [Tk(ρδ) −Tk(Bdδ)]dαδAα are bounded uniformly 

for δ in L
min{α+θ1,γ+θ2}

α (QT ) norm for any fixed k > 0, we can use the Egrov theorem to conclude that the 
last three terms on the right hand side of (5.21) vanish. Then we have

IV2 ≥
t∫

0

ψ

∫
Ω

φTk(ρ) nα dx ds. (5.24)

Case 2. α ∈ [1, ∞), γ ∈ (9
5 , ∞), and 1

c0
ρ0 ≤ n0 ≤ c0ρ0.

In this case, we have (5.2). Then repeating the corresponding steps in Case 1, we get (5.24).
For IV3, we have

IV3 = lim
δ→0+

t∫
0

ψ

∫
Ω

φTk(nδ)ργδ dx ds

= lim
δ→0+

t∫
0

ψ

∫
Ω

φTk

(
Adδ

)
ργδ dx ds + lim

δ→0+

t∫
0

ψ

∫
Ω

φ
(
Tk(nδ) − Tk

(
Adδ

))
ργδ dx ds

= lim
δ→0+

t∫
0

ψ

∫
Ω

φTk

(
Adδ

)
Bγdγδ dx ds + lim

δ→0+

t∫
0

ψ

∫
Ω

φTk

(
Adδ

)(
ργδ −Bγdγδ

)
dx ds

+ lim
δ→0+

t∫
0

ψ

∫
Ω

φ
(
Tk(nδ) − Tk

(
Adδ

))
ργδ dx ds.

(5.25)

Similar to the proof of (5.17), we have

lim
δ→0+

t∫
0

ψ

∫
Ω

φTk

(
Adδ

)
Bγdγδ dx ds

≥
t∫
ψ

∫
φTk

(
Ad

)
Bγdγ dx ds
0 Ω
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= lim
δ→0+

t∫
0

ψ

∫
Ω

φ
[
Tk

(
Adδ

)
− Tk

(
nδ

)]
Bγdγ dx ds +

t∫
0

ψ

∫
Ω

φTk

(
n
)
Bγdγ dx ds (5.26)

= lim
δ→0+

t∫
0

ψ

∫
Ω

φ
[
Tk

(
Adδ

)
− Tk

(
nδ

)]
Bγdγ dx ds +

t∫
0

ψ

∫
Ω

φTk

(
n
)
ργ dx ds

+ lim
δ→0+

t∫
0

ψ

∫
Ω

φTk

(
n
)(

Bγdγδ − ργδ

)
dx ds.

For α, γ > 9
5 and α ∈ (γ− θ1, γ + θ2), we have γ < α+ θ1. In this case, dγδ and dγ are bounded uniformly 

for δ in L
min{α+θ1,γ+θ2}

γ (QT ) norm. For α ∈ [1, ∞), γ ∈ (9
5 , ∞), and 1

c0
ρ0 ≤ n0 ≤ c0ρ0, we have (5.2) which 

implies that dγδ and dγ are bounded uniformly for δ in L
max{α+θ1,γ+θ2}

γ (QT ) norm. Then using some similar 
arguments as in the estimates of IV2, we conclude that the last two terms on the right hand side of (5.25)
and the first and the third terms on the right hand side of (5.26) vanish. Thus

IV3 ≥
t∫

0

ψ

∫
Ω

φTk

(
n
)
ργ dx ds. (5.27)

(5.15) combined with the estimates of IVi, i = 1, 2, 3, 4, i.e., (5.17), (5.18), (5.24), and (5.27), we have

t∫
0

ψ

∫
Ω

φ
[
Tk(ρ) + Tk(n)

](
ργ + nα

)
dx ds

≤ lim
δ→0+

t∫
0

ψ

∫
Ω

φ
[
Tk(ρδ) + Tk(nδ)

](
ργδ + nα

δ

)
dx ds,

(5.28)

where we have used

ργ + nα = ργ + nα.

(5.28) implies (5.14). The proof of the lemma is complete. �
Since ψ and φ are arbitrary, we immediately get

Corollary 5.6. Let (ρδ, nδ) be the solutions constructed in Proposition 4.8, and (ρ, n) be the limit, then

[
Tk(ρ) + Tk(n)

](
ργ + nα

)
≤

[
Tk(ρ) + Tk(n)

](
ργ + nα

)
a.e. on Ω × (0, T ).

Step 2: Strong convergence of ρδ and nδ

Here, we want to show the strong convergence of ρδ and nδ. This allows us to have Proposition 5.4. As 
in [12], we define
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Lk(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z log z, 0 ≤ z ≤ k,

z log k + z

z∫
k

Tk(s)
s2 ds, z ≥ k,

satisfying

Lk(z) = βkz − 2k for all z ≥ 3k,

where

βk = log k +
3k∫
k

Tk(s)
s2 ds + 2

3 .

We denote bk(z) := Lk(z) − βkz where b′k(z) = 0 for all large z, and

b′k(z)z − bk(z) = Tk(z). (5.29)

Note that ρδ, nδ ∈ L2(QT ), ρ, n ∈ L2(QT ), and uδ, u ∈ L2(0, T ; H1
0 (Ω)). By Lemma 2.5, we conclude 

that (nδ, uδ), (ρδ, uδ), (n, u) and (ρ, u) are the renormalized solutions of (4.28)i and (5.5)i for i = 1, 2, 
respectively. Thus we have⎧⎨⎩[bk(fδ)]t + div

[
bk(fδ)uδ

]
+

[
b′k(fδ)fδ − bk(fδ)

]
divuδ = 0 in D′(QT ),

[bk(f)]t + div
[
bk(f)u

]
+
[
b′k(f)f − bk(f)

]
divu = 0 in D′(QT ),

where fδ = ρδ, nδ and f = ρ, n. Thanks to (5.29) and bk(z) = Lk(z) − βkz, we arrive at

{
[Lk(ρδ) + Lk(nδ)]t + div

[(
Lk(ρδ) + Lk(nδ)

)
uδ

]
+
[
Tk(ρδ) + Tk(nδ)

]
divuδ = 0 in D′(QT ),

[Lk(ρ) + Lk(n)]t + div
[(
Lk(ρ) + Lk(n)

)
u
]
+

[
Tk(ρ) + Tk(n)

]
divu = 0 in D′(QT ).

This gives

[Lk(ρδ) − Lk(ρ) + Lk(nδ) − Lk(n)]t + div
[(
Lk(ρδ) + Lk(nδ)

)
uδ −

(
Lk(ρ) + Lk(n)

)
u
]

+
[
Tk(ρδ) + Tk(nδ)

]
divuδ −

[
Tk(ρ) + Tk(n)

]
divu = 0.

(5.30)

Taking φj as the test function of (5.30), and letting δ → ∞, we have∫
Ω

[Lk(ρ) − Lk(ρ) + Lk(n) − Lk(n)]φj dx

− lim
δ→0+

t∫
0

∫
Ω

[(
Lk(ρδ) + Lk(nδ)

)
uδ −

(
Lk(ρ) + Lk(n)

)
u
]
· ∇φj dx ds

+ lim
δ→0+

t∫
0

∫
Ω

([
Tk(ρδ) + Tk(nδ)

]
divuδ −

[
Tk(ρ) + Tk(n)

]
divu

)
φj dx ds = 0,

(5.31)

where
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φj ∈ C∞
0 (Ω), φj(x) ≡ 1 for any x ∈

{
x ∈ Ω

∣∣dist(x, ∂Ω) ≥ 1
j
}
, 0 ≤ φj ≤ 1,

|∇φj | ≤ c0j, φj → 1 as m → ∞
(5.32)

for some positive c0 independent of j.
Letting j → ∞ in (5.31), we gain∫

Ω

[Lk(ρ) − Lk(ρ) + Lk(n) − Lk(n)] dx

= − lim
δ→0+

t∫
0

∫
Ω

([
Tk(ρδ) + Tk(nδ)

]
divuδ −

[
Tk(ρ) + Tk(n)

]
divu

)
dx ds.

(5.33)

In view of Lemma 5.3, we have

− lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

]
divuδ dx ds

= − 1
2μ + λ

lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

][
(2μ + λ)divuδ − ργδ − nα

δ

]
dx ds

− 1
2μ + λ

lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

][
ργδ + nα

δ

]
dx ds

= − 1
2μ + λ

t∫
0

∫
Ω

ψjφj

[
Tk(ρ) + Tk(n)

][
(2μ + λ)divu− ργ + nα

]
dx ds

− 1
2μ + λ

lim
δ→0+

t∫
0

∫
Ω

(1 − ψjφj)
[
Tk(ρδ) + Tk(nδ)

][
(2μ + λ)divuδ − ργδ − nα

δ

]
dx ds

− 1
2μ + λ

lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

][
ργδ + nα

δ

]
dx ds,

(5.34)

where ψj and φj are given by (4.23) and (4.24) respectively. Letting j → ∞ in (5.34), we have

− lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

]
divuδ dx ds

= − 1
2μ + λ

t∫
0

∫
Ω

[
Tk(ρ) + Tk(n)

][
(2μ + λ)divu− ργ + nα

]
dx ds

− 1
2μ + λ

lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

][
ργδ + nα

δ

]
dx ds.

(5.35)

In view of (5.33) and (5.35), we have∫
[Lk(ρ) − Lk(ρ) + Lk(n) − Lk(n)] dx
Ω
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= 1
2μ + λ

t∫
0

∫
Ω

(
Tk(ρ) + Tk(n)

)(
ργ + nα

)
dx ds

− 1
2μ + λ

lim
δ→0+

t∫
0

∫
Ω

[
Tk(ρδ) + Tk(nδ)

](
ργδ + nα

δ

)
dx ds

+
t∫

0

∫
Ω

[Tk(ρ) − Tk(ρ) + Tk(n) − Tk(n)]divu dx ds,

with Corollary 5.6, which gives

∫
Ω

[Lk(ρ) − Lk(ρ) + Lk(n) − Lk(n)] dx ≤
t∫

0

∫
Ω

[Tk(ρ) − Tk(ρ) + Tk(n) − Tk(n)]divu dx ds. (5.36)

Here we are able to control the right-hand side of (5.36) as in the following lemma.

Lemma 5.7.

lim
k→∞

t∫
0

∫
Ω

[Tk(ρ) − Tk(ρ) + Tk(n) − Tk(n)]divu dx ds = 0. (5.37)

Proof. Recalling that T (z) ≤ z for all z, we have

‖Tk(ρ) − Tk(ρ)‖L2(QT ) ≤ lim inf
δ→0+

‖Tk(ρ) − Tk(ρδ)‖L2(QT )

≤C lim inf
δ→0+

‖ρ + ρδ‖Lγ+θ2 (QT )

≤C,

where we have used the Hölder inequality, γ+ θ2 ≥ 2, (5.1), (5.3), and (5.4). With the help of this estimate, 
(5.3), and (5.4), one deduces

∣∣ t∫
0

∫
Ω

[Tk(ρ) − Tk(ρ)]divu dx ds
∣∣

≤
∫

Qt∩{ρ≥k}

|Tk(ρ) − Tk(ρ)| |divu| dx ds +
∫

Qt∩{ρ≤k}

|Tk(ρ) − Tk(ρ)| |divu| dx ds

≤‖Tk(ρ) − Tk(ρ)‖L2(QT )‖divu‖L2
(
Qt∩{ρ≥k}

) + ‖Tk(ρ) − Tk(ρ)‖L2
(
Qt∩{ρ≤k}

)‖divu‖L2(QT )

≤C‖divu‖L2
(
Qt∩{ρ≥k}

) + C‖Tk(ρ) − Tk(ρ)‖L2
(
Qt∩{ρ≤k}

).

(5.38)

Note that Tk(z) = z if z ≤ k, we have

‖Tk(ρ) − Tk(ρ)‖L2
(
Qt∩{ρ≤k}

) =‖ρ− Tk(ρ)‖L2
(
Qt∩{ρ≤k}

)
≤ lim inf

δ→0+
‖ρδ − Tk(ρδ)‖L2(QT )

= lim inf
δ→0+

‖ρδ − Tk(ρδ)‖L2(QT∩{ρδ>k}) (5.39)

≤2 lim inf
δ→0+

‖ρδ‖L2(QT∩{ρδ>k})
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≤2k1− γ+θ2
2 lim inf

δ→0+
‖ρδ‖

γ+θ2
2

Lγ+θ2 (QT ) → 0

as k → ∞, due to (5.1) and the assumption γ > 9
5 such that γ + θ2 > 2.

By (5.38) and (5.39), we conclude

lim
k→∞

t∫
0

∫
Ω

[Tk(ρ) − Tk(ρ)]divu dx ds = 0. (5.40)

Similarly, we have

lim
k→∞

t∫
0

∫
Ω

[Tk(n) − Tk(n)]divu dx ds = 0. (5.41)

With (5.40) and (5.41), (5.37) follows. �
Note that (5.36) and (5.37), we have

lim sup
k→∞

∫
Ω

[Lk(ρ) − Lk(ρ) + Lk(n) − Lk(n)] dx ≤ 0. (5.42)

By the definition of L(·), it is not difficult to justify that⎧⎪⎨⎪⎩
lim
k→∞

[
‖Lk(ρ) − ρ log ρ‖L1(Ω) + ‖Lk(n) − n log n‖L1(Ω)

]
= 0,

lim
k→∞

[
‖Lk(ρ) − ρ log ρ‖L1(Ω) + ‖Lk(n) − n log n‖L1(Ω)

]
= 0.

(5.43)

Since ρ log ρ ≤ ρ log ρ and n logn ≤ n logn due to the convexity of z �→ z log z, we have

0 ≤
∫
Ω

[ρ log ρ− ρ log ρ + n logn− n logn] dx ≤ 0, (5.44)

where we have used (5.42) and (5.43). Thus we obtain

ρ log ρ = ρ log ρ and n logn = n logn.

It allows us to have the strong convergence of ρδ and nδ in Lγ(QT ) and in Lα(QT ) respectively. Therefore 
we proved (5.13). �

With Proposition 5.4, the proof of Theorem 1.2 can be done.
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